11 Introduction to the Fourier Transform and
its Application to PDEs

This is just a brief introduction to the use of the Fourier transform and
its inverse to solve some linear PDEs. Actually, the examples we pick just
reconfirm d’Alembert’s formula for the wave equation, and the heat solution
to the Cauchy heat problem, but the examples represent typical computations
one must employ to use the technique. The general strategy is to have a
PDE for u(x,t) for x € R (or for x € R"), use the Fourier transform to
get an ODE for the transformed u (or a PDE of lower dimensionality if
n > 1); then solve the ODE and use the inverse Fourier transform (and
operational formulas) to get back to a representation for u. Of course, the
last step is hardest because it requires algebra and calculus manipulations,
and sometimes requiring significant cleverness.

Actually, this is the strategy for all integral transform methods at this
level of PDEs. Different types of problems calls for different integral trans-
forms

19w = [ k.0 = o)
For example, here are a few of the most common integral transforms:
1. Fourier: f(&) = F[f(z)] = [, € f(x)dx
2. Laplace: F(s) = L[f(t)] = [i°e " f(t)dt
3. Fourier sine: f(w) = Fu[f(2)] = % [§7 sin(wz) f()dz
4. Henkel: F,(k) =H,[f(r)] = [;° Jo(kr) f(r)rdr

After our introduction of the Fourier transform, we will briefly review the
Laplace transform method in the PDE setting.

11.1 A brief introduction to the Fourier transform

Definition: For any absolutely integrable function f = f(z) defined on R,
the Fourier transform of f is given by transform 1 above.

The transform of f in “transform space ” can be recovered via an inversion
formula that defines the inverse Fourier transform
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fa) = FUFE) = / i ie)de (1)

2m J_o

Remark: The notation here is not universal. Some authors put the 1/27
factor in the definition of F, and other authors ‘split’ it; i.e. put a 1/v/2m
factor in the definition of both F and F~!. It really is incidental but must
be kept in mind when looking at Fourier transform tables (or software) from
various sources, or working out problems from other books. Although we will
formally manipulate the transform as a real integral, the study of integral
transforms is best done in an applied complex variables setting.

With every integral transform comes a notion of convolution, and here
it is defined by

fro@ = [ fe-oo@d= [ f@ae-od . @
Thus, fxg=g=x* f.
Operational formulas
A. FI%L) = (—i&)"F[f]. In particular, F[£L] = —€2f(€).
B. shift formula: F[f(z — a)] = e F[f(x)]; so F el f(&)] = f(z — a).

C. Convolution Theorem: F~'[f(€)§(&)] = f = g(x) .

Ezample: Given f(z) = H(1 — |z|), |z| < oo, find f(¢).

f(€) = /_OO ¢ H(1 — |z]) do = /_11 gier gy — O ;ge—if _ 2512(5) |

Ezample: Let f(x) = s~ '/2e7%*/28° for s > 0. Then

f(&) = 571252 /OO e~ (#0257 g0 — \/ors ¢ (5972

—00



Ezample: Solve the ODE 3" — k?*y = —f(z) on |z| < oo, where we as-
sume y(x),y'(z) — 0 as |x| — oco. Assume f(z) has a Fourier transform.
Taking the Fourier transform of both sides of the equation,

f
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Hence,

_ 1 /Oo mico_ 6 1y
o) ¢ et 2%k

g(z)

using a transform table (or complex integration theory). So, by the convo-
lution theorem,

o) = Frgla) = o [ eI ds

Ezrample: Heat equation on the line

Uy = Dy, on |z| < 0o,t >0
u(z,0) = f(x) on |z| < oo
u remains bounded at infinity (|z| — oo and ¢t — o0)

Let a(&,t) = ffooo e u(z,t) dz. Then 4(£,0) = [ e**f(z) dv =: f(é’)

(&
—00

Thus, from property A above, F(u;) = Gy = F(Dugy) = DF (tgy), OF
{ iy = —€2Di
ali=o = f(§) -

This is just a first-order linear equation, so (&, t) = f(€)e &Pt Now, if
g(x,t) is such that §(&,t) = e €°Pt then & = f§, and by the convolution
theorem,

u= f*g, that is, u(z,t) = ffooo f(Qg(x— ¢, t)dC . (3)

So, the task is to find g. By the inversion formula,

1 <
g(x,t) = / e’lg"”e’gmdﬁ .
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Note that —£2Dt —iéx = —Dt(£* +iz€/Dt) = —Dt(£ + iz /2Dt)* — 22 /ADt,
SO
2mg(x,t) = 612/4Dt/ e~ PUEH/2D0)? ge.

Let y = & + iz /2Dt, then (£ = oo — y = £o0, and r = yv Dt)

& T

2 2 2 & 2
2rg(x,t)e” /4Dt:/ e Pq :—/ e "dr =] — ,
ot T D Di

since [;° e dr = \/m/2. Therefore, g(x,t) = e */4Pt/(2\/7Dt) (which is
our previously mentioned fundamental solution to the heat equation), and

by (3), .
u(,t) / FO— g,

which verifies our more informally derived solutlon to the heat equation done
earlier.

Ezample: 1D wave equation on the line

Ugt = gy on |z| < oco,t >0
u(z,0) = f(2), u(z,0) = g(z) on |z <oo
u remains bounded at infinity (|z| — oo and t — o0)

Again let Flu] = a(¢,t) = 7 e*u(x,t)dz. Then

'LAl/tt = —C2£2€L

a(&,0) = f(€), w(&,0) = §(¢)

which implies that u(&,t) = Acos(éct) + Bsin(&ct); hence, u(£,0) = A =
£(€), while @, (£, 1) = —Aesin(Ect) + BEccos(Ect), so that @,(€,0) = Béc =
§(€). Therefore (&, t) = f(€) cos(Ect) + (£¢)1§(€) sin(Ect). This can not be
inverted directly, so replace the trig functions with their exponential repre-
sentations:

i = S L) + (€e) " 9ENS + 5 F(E) — (en)g(E)]e

1
> : 2!
= $4(6)e + §_ (e,



By the shift formula, property B above, we have u(x,t) = ¢ (x—ct)+o_(z+
ct), where a = Fct. We need one other fact, namely

Fact: if [, g(x)dx < oo, then F(i€)3(&)] = — [* gly)dy

From this we have
fEe [ owi

Combining these results, we have d’Alembert’s solution,

x+ct x—ct
e t) =l + et [ g+ 5l — - [ gty
—slte e+ o=t + 5 [ gty

where we have implicitly assumed ¢ > 0.

Remark: In the examples we have used an unstated, but very important
property of the Fourier transform (and its inverse). Namely, they are both
linear operators, and that fact is used throughout; without the linearity
property, the transform would be worthless.

One reason to introduce the Fourier transform now was to reinforce the
derived solution expressions for the heat and vibrating string problems on
the line by deriving them using the transform method. We'll do a couple
more examples here and return to transform methods later.

Ezample: Laplace’s equation on the half space |x| < oo,y > 0
Consider
V32U = Uy + Uy, =0 on |z] < oo,y >0
u(z,0) = f(x) on |z| < oo
u — 0 at infinity

Let 0(&,y) = [ ¢*"u(x, y)dz; upon substituting into the equation gives
Ty, — &20 = 0, with 4(&,0) = f(£), & — 0 as y — oo.
So the solution is a linear combination of e**¥ such that the decay condition

holds. Thus, a way of writing @ is

a(€,y) = Ae™l€W, or after applying the b.c., 4(£,y) = f({')e*‘ﬂy.
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Thus, u(z,y) = Ff(§)e W], With g = §(¢,y) = e, then if g(x,y) =
F~1[g], we have via the convolution theorem, u = f % g. Now, from the
inversion formula,

1 ~ —ir—
9(z,y) = 5 / e g

2m J_o

1 0 . o
= %{/ €l£x+£yd§+/ e*lfwfiydf}
—00 0
1 1 1
T or y—ix+y+z’x}
_1
T2+ y?

FRPTYSVRY U,

Example: Consider

Finally,
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Up = Uz — kuy 0N |z| < 00,t >0
u(z,0) = f(z) on |z] < oo

Hence, i, = —&%i — ik&t, a(6,0) = f(), so (&, t) = f(§)e ikt =
F(€)g(&). Now

1 0 itw 1 00 e i
g(x,t)zﬁ/ e ETG(E,t) dE = / e HEiE(ka/t) ¢

—o0 27 —00

But £ +if(2+ k) = (£ + 4(2 +k))* + 3(% + k)% Thus,

omg = e~H@/tHk? /4 / Ukt +0)/2? g

Let r = V(£ + £(£ + k)), then

e~ t(@/t+k)? /4 oo , e~ t(@/t+k)? /4
_— e"dr = gxt)=———
\/Z —o 24/t

By the convolution theorem,

2mg =

1 o 2
w(z,t) = f*rg= —— x—y)e U/ A g,
(,t) = f=g NH/_oof( y) y
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Example:
Up = Uy on || < oo,t >0
(z,0) = f(x) on |z| <o

~ ~

Now 1, = —t2620, 4(€,0) = f(€), so a(&, 1) = f(£)e €3, Let

g(x’ t) = ]:'—1[6—52753/3] _ 2i /OO €_i§z6_§2t3/3d§ _ 2i /OO e_(tg/g)(g_,_?»ii;&)dg .
T J—co ™ J_

o0

Now €2 4 3izg — (¢ 4 3iz)2 4 922

3 23 4¢6

2mg(z,t) = o 3% /4t /OO €—t3(£+§’;—§)2/3d§ ‘

—00

Let r = %(f + 24); then

2t3

\/§6—3:c2/4t3 0o 2 37T6—33:2/4t3 1 3 6—33:2/4153
27Tg(ﬂ?,t):T/oo€ dT:T or g(l’,t):§ ET

Again, by the convolution theorem,

1 3 o 2 3
uot) =5\ | HOS 0 e,

Remark: The Fourier transform has a straightforward generalization to higher
dimensions. For example, in the plane R?, given an absolutely integrable f
defined on R?, then

F(&,&) :=/ / Fla, y)e@sen) gg gy
and the inversion formula is
1 OO ® : —i(é1z
f@.y) =1 / / (&, @)e™" O revdg, de

Ezxample heat equation in the plane

Consider
5 = Viu in R? x R*
u(z,y,0) = f(z,y) in R?

u remains bounded at infinity
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First take the Fourier transform in @: 4(¢,y,t) = [ e u(x,y, t)dx.

Then
{ Uy = —5%7:”‘ 7;‘yy
/&(517:[/70) = f(flay> .

We now have a 1D diffusion equation in y, ¢, so now take the Fourier transform

in y:

(e, Eant) = / ey, y, £)dy — / / Gy (2 y. t)dudy.

—00

This gives us
{u —(&+ &)
W(€1,6,0) = f(&1, &)
Hence,
&1, E0,t) = (&, E)e €T,

With the knowledge that F~![e~¢] = \/%e_’” /4 we have

yi= / / i(E1a+E2y) (£f+€§)td£1d€2

o0

e 11T o= 1 —iay —E2
~ (o [ eretag)( [ e tig)

1 1 1
e—z2/4t)(_ —y2/4t) _ _6—(a:2+y2)/4t‘

Tt Tt

:(ﬁ

By the convolution theorem,

u(zx,y,t / / f(r,s)e =) +y=9)1/4t g s
7Tt

Remark: The solution u(z,y, z,t) to the heat equation Cauchy problem in
3D space, with u(z,y, z,0) = f(z,y, 2), is, rather expectantly,

uey ) = m/ / / fla, 8, y)e”wlem =D dad iy,
7T



As mentioned above, we have treated the Fourier transform in a non-
rigorous way since it is best handled within the study of complex analysis.
But it is valuable for you to get exposure to the technique informally, and
see some of its usefulness in getting solutions to some differential equations.

Summary: Know the Fourier and inverse Fourier transform formula and
do enough with problems to know the operational formulas.

FEzxercises

1. Find f(¢), where f(x) = e~ sin(ba)H(x), given that a,b are positive
constants, and H(-) is the Heaviside function.
(AHSWGI‘Z f(é-) = m )

2. Solve, via the Fourier transform method, the Cauchy problem

u = Dug, — Vu, on |z| < oo,t >0, with V, D > 0 being constants

(Answer: U(%ﬂ = \/ﬁff"m f(y)e—(x—y—Vt)2/4Dtdy)

3. Revisit the telegraph equation wuy + 28u; + qu = 2y, |x] < 00, t > 0,
with u(z,0) = f(z), u¢(x,0) = g(x). Use the Fourier transform to solve
the problem in the special case where 82 = a.



