
11 Introduction to the Fourier Transform and

its Application to PDEs

This is just a brief introduction to the use of the Fourier transform and
its inverse to solve some linear PDEs. Actually, the examples we pick just
reconfirm d’Alembert’s formula for the wave equation, and the heat solution
to the Cauchy heat problem, but the examples represent typical computations
one must employ to use the technique. The general strategy is to have a
PDE for u(x, t) for x ∈ R (or for x ∈ Rn), use the Fourier transform to
get an ODE for the transformed û (or a PDE of lower dimensionality if
n > 1); then solve the ODE and use the inverse Fourier transform (and
operational formulas) to get back to a representation for u. Of course, the
last step is hardest because it requires algebra and calculus manipulations,
and sometimes requiring significant cleverness.

Actually, this is the strategy for all integral transform methods at this
level of PDEs. Different types of problems calls for different integral trans-
forms

(If)(y) :=

∫ b

a

k(y, ζ)dζ = f̂(y) .

For example, here are a few of the most common integral transforms:

1. Fourier: f̂(ξ) = F [f(x)] =
∫∞
−∞ e

iξxf(x)dx

2. Laplace: F (s) = L[f(t)] =
∫∞
0
e−stf(t)dt

3. Fourier sine: f̂(ω) = Fs[f(x)] = 2√
π

∫∞
0

sin(ωx)f(x)dx

4. Henkel: Fν(k) = Hν [f(r)] =
∫∞
0
Jν(kr)f(r)rdr

After our introduction of the Fourier transform, we will briefly review the
Laplace transform method in the PDE setting.

11.1 A brief introduction to the Fourier transform

Definition: For any absolutely integrable function f = f(x) defined on R,
the Fourier transform of f is given by transform 1 above.

The transform of f in “transform space ” can be recovered via an inversion
formula that defines the inverse Fourier transform
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f(x) = F−1[f̂(ξ)] =
1

2π

∫ ∞
−∞

e−iξxf̂(ξ)dξ . (1)

Remark : The notation here is not universal. Some authors put the 1/2π
factor in the definition of F , and other authors ‘split’ it; i.e. put a 1/

√
2π

factor in the definition of both F and F−1. It really is incidental but must
be kept in mind when looking at Fourier transform tables (or software) from
various sources, or working out problems from other books. Although we will
formally manipulate the transform as a real integral, the study of integral
transforms is best done in an applied complex variables setting.

With every integral transform comes a notion of convolution, and here
it is defined by

f ∗ g(x) =

∫ ∞
−∞

f(x− ξ)g(ξ)dξ =

∫ ∞
−∞

f(ξ)g(x− ξ)dξ . (2)

Thus, f ∗ g = g ∗ f .

Operational formulas

A. F [d
nf
dxn

] = (−iξ)nF [f ]. In particular, F [d
2f
dx2

] = −ξ2f̂(ξ).

B. shift formula: F [f(x− a)] = eiξaF [f(x)]; so F−1[eiξaf̂(ξ)] = f(x− a).

C. Convolution Theorem: F−1[f̂(ξ)ĝ(ξ)] = f ∗ g(x) .

Example: Given f(x) = H(1− |x|), |x| <∞, find f̂(ξ).

f̂(ξ) =

∫ ∞
−∞

eiξxH(1− |x|) dx =

∫ 1

−1
eiξx dx =

eiξ − e−iξ

iξ
=

2 sin(ξ)

ξ
.

Example: Let f(x) = s−1/2e−x
2/2s2 , for s > 0. Then

f̂(ξ) = s−1/2e−s
2ξ2/2

∫ ∞
−∞

e−(x−is
2ξ)2/2s2dx =

√
2πs e−(sξ)

2/2
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Example: Solve the ODE y′′ − k2y = −f(x) on |x| < ∞, where we as-
sume y(x), y′(x)→ 0 as |x| → ∞. Assume f(x) has a Fourier transform.
Taking the Fourier transform of both sides of the equation,

−ξ2ŷ − k2ŷ = −f̂ → ŷ =
f̂

ξ2 + k2
= f̂ ĝ .

Hence,

g(x) =
1

2π

∫ ∞
−∞

e−iξx
dξ

ξ2 + k2
=

1

2k
e−k|x|

using a transform table (or complex integration theory). So, by the convo-
lution theorem,

y(x) = f ∗ g(x) =
1

2k

∫ ∞
−∞

e−k|x−s|f(s) ds .

Example: Heat equation on the line
ut = Duxx on |x| <∞, t > 0
u(x, 0) = f(x) on |x| <∞
u remains bounded at infinity (|x| → ∞ and t→∞)

Let û(ξ, t) =
∫∞
−∞ e

iξxu(x, t) dx. Then û(ξ, 0) =
∫∞
−∞ e

iξxf(x) dx =: f̂(ξ).
Thus, from property A above, F(ut) = ût = F(Duxx) = DF(uxx), or{

ût = −ξ2Dû
û|t=0 = f̂(ξ) .

This is just a first-order linear equation, so û(ξ, t) = f̂(ξ)e−ξ
2Dt. Now, if

g(x, t) is such that ĝ(ξ, t) = e−ξ
2Dt, then û = f̂ ĝ, and by the convolution

theorem,

u = f ∗ g, that is, u(x, t) =
∫∞
−∞ f(ζ)g(x− ζ, t)dζ . (3)

So, the task is to find g. By the inversion formula,

g(x, t) =
1

2π

∫ ∞
−∞

e−iξxe−ξ
2Dtdξ .
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Note that −ξ2Dt− iξx = −Dt(ξ2 + ixξ/Dt) = −Dt(ξ+ ix/2Dt)2− x2/4Dt,
so

2πg(x, t) = e−x
2/4Dt

∫ ∞
−∞

e−Dt(ξ+ix/2Dt)
2

dξ.

Let y = ξ + ix/2Dt, then (ξ = ±∞→ y = ±∞, and r = y
√
Dt)

2πg(x, t)ex
2/4Dt =

∫ ∞
−∞

e−Dty
2

dy =
2√
Dt

∫ ∞
0

e−r
2

dr =

√
π

Dt
,

since
∫∞
0
e−r

2
dr =

√
π/2. Therefore, g(x, t) = e−x

2/4Dt/(2
√
πDt) (which is

our previously mentioned fundamental solution to the heat equation), and
by (3),

u(x, t) =

∫ ∞
−∞

f(ζ)
e−(x−ζ)

2/4Dt

2
√
πDt

dζ,

which verifies our more informally derived solution to the heat equation done
earlier.

Example: 1D wave equation on the line
utt = c2uxx on |x| <∞, t > 0
u(x, 0) = f(x), ut(x, 0) = g(x) on |x| <∞
u remains bounded at infinity (|x| → ∞ and t→∞)

Again let F [u] = û(ξ, t) =
∫∞
−∞ e

iξxu(x, t)dx. Then

ûtt = −c2ξ2û
û(ξ, 0) = f̂(ξ), ût(ξ, 0) = ĝ(ξ)

which implies that û(ξ, t) = A cos(ξct) + B sin(ξct); hence, û(ξ, 0) = A =
f̂(ξ), while ût(ξ, t) = −Aξc sin(ξct) + Bξc cos(ξct), so that ût(ξ, 0) = Bξc =
ĝ(ξ). Therefore û(ξ, t) = f̂(ξ) cos(ξct) + (ξc)−1ĝ(ξ) sin(ξct). This can not be
inverted directly, so replace the trig functions with their exponential repre-
sentations:

û =
1

2
[f̂(ξ) + (ξci)−1ĝ(ξ)]eiξct +

1

2
[f̂(ξ)− (ξci)−1ĝ(ξ)]e−iξct

= φ̂+(ξ)eiξct + φ̂−(ξ)e−iξct.

4



By the shift formula, property B above, we have u(x, t) = φ+(x−ct)+φ−(x+
ct), where a = ∓ct. We need one other fact, namely

Fact: if
∫∞
−∞ g(x)dx <∞, then F−1[(iξ)−1ĝ(ξ)] = −

∫ x
−∞ g(y)dy .

From this we have

φ±(x) =
1

2
[f(x)± c−1

∫ x

−∞
g(y)dy] .

Combining these results, we have d’Alembert’s solution,

u(x, t) =
1

2
[f(x+ ct) + c−1

∫ x+ct

−∞
g(y)dy] +

1

2
[f(x− ct)− c−1

∫ x−ct

−∞
g(y)dy]

=
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct
g(y)dy ,

where we have implicitly assumed c > 0.

Remark : In the examples we have used an unstated, but very important
property of the Fourier transform (and its inverse). Namely, they are both
linear operators, and that fact is used throughout; without the linearity
property, the transform would be worthless.

One reason to introduce the Fourier transform now was to reinforce the
derived solution expressions for the heat and vibrating string problems on
the line by deriving them using the transform method. We’ll do a couple
more examples here and return to transform methods later.

Example: Laplace’s equation on the half space |x| <∞, y > 0
Consider 

∇2u = uxx + uyy = 0 on |x| <∞, y > 0
u(x, 0) = f(x) on |x| <∞
u→ 0 at infinity

Let û(ξ, y) =
∫∞
−∞ e

iξxu(x, y)dx; upon substituting into the equation gives

ûyy − ξ2û = 0, with û(ξ, 0) = f̂(ξ), û→ 0 as y →∞.
So the solution is a linear combination of e±ξy such that the decay condition
holds. Thus, a way of writing û is

û(ξ, y) = Ae−|ξ|y, or after applying the b.c., û(ξ, y) = f̂(ξ)e−|ξ|y.
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Thus, u(x, y) = F−1[f̂(ξ)e−|ξ|y]. With ĝ = ĝ(ξ, y) = e−|ξ|y, then if g(x, y) =
F−1[ĝ], we have via the convolution theorem, u = f ∗ g. Now, from the
inversion formula,

g(x, y) =
1

2π

∫ ∞
−∞

e−iξx−|ξ|ydξ

=
1

2π
{
∫ 0

−∞
e−iξx+ξydξ +

∫ ∞
0

e−iξx−ξydξ}

=
1

2π
{ 1

y − ix
+

1

y + ix
}

=
1

π

y

x2 + y2
.

Finally,

u(x, y) = f ∗ g =
y

π

∫ ∞
−∞

f(s)

(x− s)2 + y2
ds .

Example: Consider{
ut = uxx − kux on |x| <∞, t > 0
u(x, 0) = f(x) on |x| <∞

Hence, ût = −ξ2û − ikξû, û(ξ, 0) = f̂(ξ), so û(ξ, t) = f̂(ξ)e−ξ
2t−ikξt =

f̂(ξ)ĝ(ξ). Now

g(x, t) =
1

2π

∫ ∞
−∞

e−iξxĝ(ξ, t) dξ =
1

2π

∫ ∞
−∞

e−t(ξ
2+iξ(k+x/t)dξ

But ξ2 + iξ(x
t

+ k) = (ξ + i
2
(x
t

+ k))2 + 1
4
(x
t

+ k)2. Thus,

2πg = e−t(x/t+k)
2/4

∫ ∞
−∞

e−t(ξ+i(x/t+k)/2)
2

dξ .

Let r =
√
t(ξ + i

2
(x
t

+ k)), then

2πg =
e−t(x/t+k)

2/4

√
t

∫ ∞
−∞

e−r
2

dr ⇒ g(x, t) =
e−t(x/t+k)

2/4

2
√
πt

.

By the convolution theorem,

u(x, t) = f ∗ g =
1

2
√
πt

∫ ∞
−∞

f(x− y)e−t(k+y/t)
2/4dy .
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Example: {
ut = t2uxx on |x| <∞, t > 0
u(x, 0) = f(x) on |x| <∞

Now ût = −t2ξ2û, û(ξ, 0) = f̂(ξ), so û(ξ, t) = f̂(ξ)e−ξ
2t3/3. Let

g(x, t) = F−1[e−ξ2t3/3] =
1

2π

∫ ∞
−∞

e−iξxe−ξ
2t3/3dξ =

1

2π

∫ ∞
−∞

e−(t
3/3)(ξ2+ 3ixξ

t3
)dξ .

Now ξ2 + 3ix
t3
ξ = (ξ + 3ix

2t3
)2 + 9x2

4t6
, so

2πg(x, t) = e−3x
2/4t3

∫ ∞
−∞

e−t
3(ξ+ 3ix

2t3
)2/3dξ .

Let r = t3/2√
3

(ξ + 3ix
2t3

); then

2πg(x, t) =

√
3e−3x

2/4t3

t3/2

∫ ∞
−∞

e−r
2

dr =

√
3πe−3x

2/4t3

t3/2
or g(x, t) =

1

2

√
3

πt

e−3x
2/4t3

t
.

Again, by the convolution theorem,

u(x, t) =
1

2

√
3

πt3

∫ ∞
−∞

f(ξ)e−3(x−ξ)
2/4t3 dξ .

Remark : The Fourier transform has a straightforward generalization to higher
dimensions. For example, in the plane R2, given an absolutely integrable f
defined on R2, then

f̂(ξ1, ξ2) :=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)ei(ξ1x+ξ2y)dx dy

and the inversion formula is

f(x, y) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

f̂(ξ1, ξ2)e
−i(ξ1x+ξ2y)dξ1 dξ2

Example heat equation in the plane
Consider 

∂u
∂t

= ∇2u in R2 × R+

u(x, y, 0) = f(x, y) in R2

u remains bounded at infinity
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First take the Fourier transform in x: û(ξ, y, t) =
∫∞
−∞ e

iξxu(x, y, t)dx.
Then {

ût = −ξ21 û+ ûyy
û(ξ1, y, 0) = f̂(ξ1, y) .

We now have a 1D diffusion equation in y, t, so now take the Fourier transform
in y:

ˆ̂u(ξ1, ξ2, t) =

∫ ∞
−∞

eiξ2yû(ξ1, y, t)dy =

∫ ∞
−∞

∫ ∞
−∞

ei(ξ1x+ξ2y)u(x, y, t)dxdy.

This gives us {
ˆ̂ut = −(ξ21 + ξ22)ˆ̂u

ˆ̂u(ξ1, ξ2, 0) =
ˆ̂
f(ξ1, ξ2)

Hence,
ˆ̂u(ξ1, ξ2, t) =

ˆ̂
f(ξ1, ξ2)e

−(ξ21+ξ22)t.

With the knowledge that F−1[e−ξ21t] = 1√
πt
e−x

2/4t, we have

1

4π2

∫ ∞
−∞

∫ ∞
−∞

e−i(ξ1x+ξ2y)e−(ξ
2
1+ξ

2
2)tdξ1dξ2

= (
1

2π

∫ ∞
−∞

e−iξ1xe−ξ
2
1tdξ1)(

1

2π

∫ ∞
−∞

e−iξ2ye−ξ
2
2tdξ2)

= (
1√
πt
e−x

2/4t)(
1√
πt
e−y

2/4t) =
1

πt
e−(x

2+y2)/4t.

By the convolution theorem,

u(x, y, t) =
1

πt

∫ ∞
−∞

∫ ∞
−∞

f(r, s)e−[(x−r)
2+(y−s)2]/4tdrds.

Remark : The solution u(x, y, z, t) to the heat equation Cauchy problem in
3D space, with u(x, y, z, 0) = f(x, y, z), is, rather expectantly,

u(x, y, z, t) =
1

(πt)3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(α, β, γ)e−
1
4t
{(x−α)2+(y−β)2+(z−γ)2}dαdβdγ.
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As mentioned above, we have treated the Fourier transform in a non-
rigorous way since it is best handled within the study of complex analysis.
But it is valuable for you to get exposure to the technique informally, and
see some of its usefulness in getting solutions to some differential equations.

Summary: Know the Fourier and inverse Fourier transform formula and
do enough with problems to know the operational formulas.

Exercises

1. Find f̂(ξ), where f(x) = e−ax sin(bx)H(x), given that a, b are positive
constants, and H(·) is the Heaviside function.
(Answer: f̂(ξ) = b

(a+iξ)2+b2
)

2. Solve, via the Fourier transform method, the Cauchy problem

ut = Duxx − V ux on |x| <∞, t > 0, with V,D > 0 being constants

(Answer: u(x, t) = 1√
4πDt

∫∞
−∞ f(y)e−(x−y−V t)

2/4Dtdy)

3. Revisit the telegraph equation utt + 2βut +αu = c2uxx, |x| <∞, t > 0,
with u(x, 0) = f(x), ut(x, 0) = g(x). Use the Fourier transform to solve
the problem in the special case where β2 = α.
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